5,799 research outputs found

    Lack of Transit Timing Variations of OGLE-TR-111b: A re-analysis with six new epochs

    Get PDF
    We present six new transits of the exoplanet OGLE-TR-111b observed with the Magellan Telescopes in Chile between April 2008 and March 2009. We combine these new transits with five previously published transit epochs for this planet between 2005 and 2006 to extend the analysis of transit timing variations reported for this system. We derive a new planetary radius value of 1.019 +/- 0.026 R_J, which is intermediate to the previously reported radii of 1.067 +/- 0.054 R_J (Winn et al. 2007) and 0.922 +/- 0.057 R_J (Diaz et al. 2008). We also examine the transit timing variation and duration change claims of Diaz et al. (2008). Our analysis of all eleven transit epochs does not reveal any points with deviations larger than 2 sigma, and most points are well within 1 sigma. Although the transit duration nominally decreases over the four year span of the data, systematic errors in the photometry can account for this result. Therefore, there is no compelling evidence for either a timing or a duration variation in this system. Numerical integrations place an upper limit of about 1 M_E on the mass of a potential second planet in a 2:1 mean-motion resonance with OGLE-TR-111b.Comment: 28 pages, 7 tables, 6 figures. Accepted by Ap

    Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope

    Get PDF
    Doppler and transit surveys are finding extrasolar planets of ever smaller mass and radius, and are now sampling the domain of superEarths (1-3 Earth radii). Recent results from the Doppler surveys suggest that discovery of a transiting superEarth in the habitable zone of a lower main sequence star may be possible. We evaluate the prospects for an all-sky transit survey targeted to the brightest stars, that would find the most favorable cases for photometric and spectroscopic characterization using the James Webb Space Telescope (JWST). We use the proposed Transiting Exoplanet Survey Satellite (TESS) as representative of an all-sky survey. We couple the simulated TESS yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. We focus on the TESS planets with radii between Earth and Neptune. Our simulations consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11- and 15-micron bands to measure CO2 absorption in superEarths, as well as JWST/NIRSpec spectroscopy of water absorption from 1.7-3.0 microns, and CO2 absorption at 4.3-microns. We project that TESS will discover about eight nearby habitable transiting superEarths. The principal sources of uncertainty in the prospects for JWST characterization of habitable superEarths are superEarth frequency and the nature of superEarth atmospheres. Based on our estimates of these uncertainties, we project that JWST will be able to measure the temperature, and identify molecular absorptions (water, CO2) in one to four nearby habitable TESS superEarths.Comment: accepted for PASP; added discussion and figure for habitable planets; abridged Abstrac

    The Zeeman effect in the G band

    Full text link
    We investigate the possibility of measuring magnetic field strength in G-band bright points through the analysis of Zeeman polarization in molecular CH lines. To this end we solve the equations of polarized radiative transfer in the G band through a standard plane-parallel model of the solar atmosphere with an imposed magnetic field, and through a more realistic snapshot from a simulation of solar magneto-convection. This region of the spectrum is crowded with many atomic and molecular lines. Nevertheless, we find several instances of isolated groups of CH lines that are predicted to produce a measurable Stokes V signal in the presence of magnetic fields. In part this is possible because the effective Land\'{e} factors of lines in the stronger main branch of the CH A2Δ^{2}\Delta--X2Π^{2}\Pi transition tend to zero rather quickly for increasing total angular momentum JJ, resulting in a Stokes VV spectrum of the G band that is less crowded than the corresponding Stokes II spectrum. We indicate that, by contrast, the effective Land\'{e} factors of the RR and PP satellite sub-branches of this transition tend to ±1\pm 1 for increasing JJ. However, these lines are in general considerably weaker, and do not contribute significantly to the polarization signal. In one wavelength location near 430.4 nm the overlap of several magnetically sensitive and non-sensitive CH lines is predicted to result in a single-lobed Stokes VV profile, raising the possibility of high spatial-resolution narrow-band polarimetric imaging. In the magneto-convection snapshot we find circular polarization signals of the order of 1% prompting us to conclude that measuring magnetic field strength in small-scale elements through the Zeeman effect in CH lines is a realistic prospect.Comment: 22 pages, 6 figures. To be published in the Astrophysical Journa

    Transit Detection in the MEarth Survey of Nearby M Dwarfs: Bridging the Clean-First, Search-Later Divide

    Full text link
    In the effort to characterize the masses, radii, and atmospheres of potentially habitable exoplanets, there is an urgent need to find examples of such planets transiting nearby M dwarfs. The MEarth Project is an ongoing effort to do so, as a ground-based photometric survey designed to detect exoplanets as small as 2 Earth radii transiting mid-to-late M dwarfs within 33 pc of the Sun. Unfortunately, identifying transits of such planets in photometric monitoring is complicated both by the intrinsic stellar variability that is common among these stars and by the nocturnal cadence, atmospheric variations, and instrumental systematics that often plague Earth-bound observatories. Here we summarize the properties of MEarth data gathered so far, and we present a new framework to detect shallow exoplanet transits in wiggly and irregularly-spaced light curves. In contrast to previous methods that clean trends from light curves before searching for transits, this framework assesses the significance of individual transits simultaneously while modeling variability, systematics, and the photometric quality of individual nights. Our Method for Including Starspots and Systematics in the Marginalized Probability of a Lone Eclipse (MISS MarPLE) uses a computationally efficient semi-Bayesian approach to explore the vast probability space spanned by the many parameters of this model, naturally incorporating the uncertainties in these parameters into its evaluation of candidate events. We show how to combine individual transits processed by MISS MarPLE into periodic transiting planet candidates and compare our results to the popular Box-fitting Least Squares (BLS) method with simulations. By applying MISS MarPLE to observations from the MEarth Project, we demonstrate the utility of this framework for robustly assessing the false alarm probability of transit signals in real data. [slightly abridged]Comment: accepted to the Astronomical Journal, 21 pages, 12 figure

    The Transit Light Curve Project. XII. Six Transits of the Exoplanet XO-2b

    Full text link
    We present photometry of six transits of the exoplanet XO-2b. By combining the light-curve analysis with theoretical isochrones to determine the stellar properties, we find the planetary radius to be 0.996 +0.031/-0.018 rjup and the planetary mass to be 0.565 +/- 0.054 mjup. These results are consistent with those reported previously, and are also consistent with theoretical models for gas giant planets. The mid-transit times are accurate to within 1 min and are consistent with a constant period. However, the period we derive differs by 2.5 sigma from the previously published period. More data are needed to tell whether the period is actually variable (as it would be in the presence of an additional body) or if the timing errors have been underestimated.Comment: Accepted for publication in AJ. 20 pages, 3 tables, 4 figure

    The Transit Light Curve Project. IV. Five Transits of the Exoplanet OGLE-TR-10b

    Full text link
    We present I and B photometry of five distinct transits of the exoplanet OGLE-TR-10b. By modeling the light curves, we find the planetary radius to be R_P = 1.06 +/- 0.08 R_Jup and the stellar radius to be R_S = 1.10 +/- 0.07 R_sun. The uncertainties are dominated by statistical errors in the photometry. Our estimate of the planetary radius is smaller than previous estimates that were based on lower-precision photometry, and hence the planet is not as anomalously large as was previously thought. We provide updated determinations of all the system parameters, including the transit ephemerides.Comment: Accepted in the Astrophysical Journal, 23 October 2006. Includes observations of additional transits to confirm earlier results. [15 pg, 6 figs

    MOST Spacebased Photometry of the Transiting Exoplanet System HD 189733: Precise Timing Measurements for Transits Across an Active Star

    Full text link
    We have measured transit times for HD 189733b passing in front of its bright (V = 7.67) chromospherically active and spotted parent star. Nearly continuous broadband optical photometry of this system was obtained with the MOST (Microvariability & Oscillations of STars) space telescope during 21 days in August 2006, monitoring 10 consecutive transits. We have used these data to search for deviations from a constant orbital period which can indicate the presence of additional planets in the system that are as yet undetected by Doppler searches. There are no transit timing variations above the level of ±45{\pm}45 s, ruling out super-Earths (of masses 1 - 4 M_{\earth}) in the 1:2 and 2:3 inner resonances and planets of 20 M_{\earth} in the 2:1 outer resonance of the known planet. We also discuss complications in measuring transit times for a planet that transits an active star with large star spots, and how the transits can help constrain and test spot models. This has implications for the large number of such systems expected to be discovered by the CoRoT and Kepler missions.Comment: 26 pages, 7 figures, accepted to Ap

    High Cadence Near Infrared Timing Observations of Extrasolar Planets: I. GJ 436b and XO-1b

    Full text link
    Currently the only technique sensitive to Earth mass planets around nearby stars (that are too close for microlensing) is the monitoring of the transit time variations of the transiting extrasolar planets. We search for additional planets in the systems of the hot Neptune GJ 436b, and the hot-Jupiter XO-1b, using high cadence observations in the J and Ks bands. New high-precision transit timing measurements are reported: GJ 436b Tc = 2454238.47898 \pm 0.00046 HJD; XO-1b Tc(A) = 2454218.83331 \pm 0.00114 HJD, Tc(B) = 2454222.77539 \pm 0.00036 HJD, Tc(C) = 2454222.77597 \pm 0.00039 HJD, Tc(D) = 2454226.71769 \pm 0.00034 HJD, and they were used to derive new ephemeris. We also determined depths for these transits. No statistically significant timing deviations were detected. We demonstrate that the high cadence ground based near-infrared observations are successful in constraining the mean transit time to ~30 sec., and are a viable alternative to space missions.Comment: 7 pages, 4 figures. To appear in A&
    • 

    corecore